3.334 \(\int \frac{x^4}{(a+b x^3)^2} \, dx\)

Optimal. Leaf size=136 \[ \frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{9 \sqrt [3]{a} b^{5/3}}-\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 \sqrt [3]{a} b^{5/3}}-\frac{2 \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{3 \sqrt{3} \sqrt [3]{a} b^{5/3}}-\frac{x^2}{3 b \left (a+b x^3\right )} \]

[Out]

-x^2/(3*b*(a + b*x^3)) - (2*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/(3*Sqrt[3]*a^(1/3)*b^(5/3)) - (
2*Log[a^(1/3) + b^(1/3)*x])/(9*a^(1/3)*b^(5/3)) + Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2]/(9*a^(1/3)*b^
(5/3))

________________________________________________________________________________________

Rubi [A]  time = 0.0651125, antiderivative size = 136, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.538, Rules used = {288, 292, 31, 634, 617, 204, 628} \[ \frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{9 \sqrt [3]{a} b^{5/3}}-\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 \sqrt [3]{a} b^{5/3}}-\frac{2 \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{3 \sqrt{3} \sqrt [3]{a} b^{5/3}}-\frac{x^2}{3 b \left (a+b x^3\right )} \]

Antiderivative was successfully verified.

[In]

Int[x^4/(a + b*x^3)^2,x]

[Out]

-x^2/(3*b*(a + b*x^3)) - (2*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/(3*Sqrt[3]*a^(1/3)*b^(5/3)) - (
2*Log[a^(1/3) + b^(1/3)*x])/(9*a^(1/3)*b^(5/3)) + Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2]/(9*a^(1/3)*b^
(5/3))

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 292

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> -Dist[(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x^4}{\left (a+b x^3\right )^2} \, dx &=-\frac{x^2}{3 b \left (a+b x^3\right )}+\frac{2 \int \frac{x}{a+b x^3} \, dx}{3 b}\\ &=-\frac{x^2}{3 b \left (a+b x^3\right )}-\frac{2 \int \frac{1}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{9 \sqrt [3]{a} b^{4/3}}+\frac{2 \int \frac{\sqrt [3]{a}+\sqrt [3]{b} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{9 \sqrt [3]{a} b^{4/3}}\\ &=-\frac{x^2}{3 b \left (a+b x^3\right )}-\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 \sqrt [3]{a} b^{5/3}}+\frac{\int \frac{-\sqrt [3]{a} \sqrt [3]{b}+2 b^{2/3} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{9 \sqrt [3]{a} b^{5/3}}+\frac{\int \frac{1}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{3 b^{4/3}}\\ &=-\frac{x^2}{3 b \left (a+b x^3\right )}-\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 \sqrt [3]{a} b^{5/3}}+\frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{9 \sqrt [3]{a} b^{5/3}}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{3 \sqrt [3]{a} b^{5/3}}\\ &=-\frac{x^2}{3 b \left (a+b x^3\right )}-\frac{2 \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{3 \sqrt{3} \sqrt [3]{a} b^{5/3}}-\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 \sqrt [3]{a} b^{5/3}}+\frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{9 \sqrt [3]{a} b^{5/3}}\\ \end{align*}

Mathematica [A]  time = 0.0729075, size = 119, normalized size = 0.88 \[ \frac{\frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{\sqrt [3]{a}}-\frac{3 b^{2/3} x^2}{a+b x^3}-\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{a}}-\frac{2 \sqrt{3} \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt{3}}\right )}{\sqrt [3]{a}}}{9 b^{5/3}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^4/(a + b*x^3)^2,x]

[Out]

((-3*b^(2/3)*x^2)/(a + b*x^3) - (2*Sqrt[3]*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]])/a^(1/3) - (2*Log[a^(1/
3) + b^(1/3)*x])/a^(1/3) + Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2]/a^(1/3))/(9*b^(5/3))

________________________________________________________________________________________

Maple [A]  time = 0.008, size = 108, normalized size = 0.8 \begin{align*} -{\frac{{x}^{2}}{3\,b \left ( b{x}^{3}+a \right ) }}-{\frac{2}{9\,{b}^{2}}\ln \left ( x+\sqrt [3]{{\frac{a}{b}}} \right ){\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}+{\frac{1}{9\,{b}^{2}}\ln \left ({x}^{2}-\sqrt [3]{{\frac{a}{b}}}x+ \left ({\frac{a}{b}} \right ) ^{{\frac{2}{3}}} \right ){\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}+{\frac{2\,\sqrt{3}}{9\,{b}^{2}}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{x{\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}-1 \right ) } \right ){\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(b*x^3+a)^2,x)

[Out]

-1/3*x^2/b/(b*x^3+a)-2/9/b^2/(1/b*a)^(1/3)*ln(x+(1/b*a)^(1/3))+1/9/b^2/(1/b*a)^(1/3)*ln(x^2-(1/b*a)^(1/3)*x+(1
/b*a)^(2/3))+2/9/b^2*3^(1/2)/(1/b*a)^(1/3)*arctan(1/3*3^(1/2)*(2/(1/b*a)^(1/3)*x-1))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^3+a)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.80404, size = 930, normalized size = 6.84 \begin{align*} \left [-\frac{3 \, a b^{2} x^{2} - 3 \, \sqrt{\frac{1}{3}}{\left (a b^{2} x^{3} + a^{2} b\right )} \sqrt{\frac{\left (-a b^{2}\right )^{\frac{1}{3}}}{a}} \log \left (\frac{2 \, b^{2} x^{3} - a b + 3 \, \sqrt{\frac{1}{3}}{\left (a b x + 2 \, \left (-a b^{2}\right )^{\frac{2}{3}} x^{2} + \left (-a b^{2}\right )^{\frac{1}{3}} a\right )} \sqrt{\frac{\left (-a b^{2}\right )^{\frac{1}{3}}}{a}} - 3 \, \left (-a b^{2}\right )^{\frac{2}{3}} x}{b x^{3} + a}\right ) -{\left (b x^{3} + a\right )} \left (-a b^{2}\right )^{\frac{2}{3}} \log \left (b^{2} x^{2} + \left (-a b^{2}\right )^{\frac{1}{3}} b x + \left (-a b^{2}\right )^{\frac{2}{3}}\right ) + 2 \,{\left (b x^{3} + a\right )} \left (-a b^{2}\right )^{\frac{2}{3}} \log \left (b x - \left (-a b^{2}\right )^{\frac{1}{3}}\right )}{9 \,{\left (a b^{4} x^{3} + a^{2} b^{3}\right )}}, -\frac{3 \, a b^{2} x^{2} - 6 \, \sqrt{\frac{1}{3}}{\left (a b^{2} x^{3} + a^{2} b\right )} \sqrt{-\frac{\left (-a b^{2}\right )^{\frac{1}{3}}}{a}} \arctan \left (\frac{\sqrt{\frac{1}{3}}{\left (2 \, b x + \left (-a b^{2}\right )^{\frac{1}{3}}\right )} \sqrt{-\frac{\left (-a b^{2}\right )^{\frac{1}{3}}}{a}}}{b}\right ) -{\left (b x^{3} + a\right )} \left (-a b^{2}\right )^{\frac{2}{3}} \log \left (b^{2} x^{2} + \left (-a b^{2}\right )^{\frac{1}{3}} b x + \left (-a b^{2}\right )^{\frac{2}{3}}\right ) + 2 \,{\left (b x^{3} + a\right )} \left (-a b^{2}\right )^{\frac{2}{3}} \log \left (b x - \left (-a b^{2}\right )^{\frac{1}{3}}\right )}{9 \,{\left (a b^{4} x^{3} + a^{2} b^{3}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^3+a)^2,x, algorithm="fricas")

[Out]

[-1/9*(3*a*b^2*x^2 - 3*sqrt(1/3)*(a*b^2*x^3 + a^2*b)*sqrt((-a*b^2)^(1/3)/a)*log((2*b^2*x^3 - a*b + 3*sqrt(1/3)
*(a*b*x + 2*(-a*b^2)^(2/3)*x^2 + (-a*b^2)^(1/3)*a)*sqrt((-a*b^2)^(1/3)/a) - 3*(-a*b^2)^(2/3)*x)/(b*x^3 + a)) -
 (b*x^3 + a)*(-a*b^2)^(2/3)*log(b^2*x^2 + (-a*b^2)^(1/3)*b*x + (-a*b^2)^(2/3)) + 2*(b*x^3 + a)*(-a*b^2)^(2/3)*
log(b*x - (-a*b^2)^(1/3)))/(a*b^4*x^3 + a^2*b^3), -1/9*(3*a*b^2*x^2 - 6*sqrt(1/3)*(a*b^2*x^3 + a^2*b)*sqrt(-(-
a*b^2)^(1/3)/a)*arctan(sqrt(1/3)*(2*b*x + (-a*b^2)^(1/3))*sqrt(-(-a*b^2)^(1/3)/a)/b) - (b*x^3 + a)*(-a*b^2)^(2
/3)*log(b^2*x^2 + (-a*b^2)^(1/3)*b*x + (-a*b^2)^(2/3)) + 2*(b*x^3 + a)*(-a*b^2)^(2/3)*log(b*x - (-a*b^2)^(1/3)
))/(a*b^4*x^3 + a^2*b^3)]

________________________________________________________________________________________

Sympy [A]  time = 0.537006, size = 44, normalized size = 0.32 \begin{align*} - \frac{x^{2}}{3 a b + 3 b^{2} x^{3}} + \operatorname{RootSum}{\left (729 t^{3} a b^{5} + 8, \left ( t \mapsto t \log{\left (\frac{81 t^{2} a b^{3}}{4} + x \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(b*x**3+a)**2,x)

[Out]

-x**2/(3*a*b + 3*b**2*x**3) + RootSum(729*_t**3*a*b**5 + 8, Lambda(_t, _t*log(81*_t**2*a*b**3/4 + x)))

________________________________________________________________________________________

Giac [A]  time = 1.14293, size = 178, normalized size = 1.31 \begin{align*} -\frac{x^{2}}{3 \,{\left (b x^{3} + a\right )} b} - \frac{2 \, \left (-\frac{a}{b}\right )^{\frac{2}{3}} \log \left ({\left | x - \left (-\frac{a}{b}\right )^{\frac{1}{3}} \right |}\right )}{9 \, a b} - \frac{2 \, \sqrt{3} \left (-a b^{2}\right )^{\frac{2}{3}} \arctan \left (\frac{\sqrt{3}{\left (2 \, x + \left (-\frac{a}{b}\right )^{\frac{1}{3}}\right )}}{3 \, \left (-\frac{a}{b}\right )^{\frac{1}{3}}}\right )}{9 \, a b^{3}} + \frac{\left (-a b^{2}\right )^{\frac{2}{3}} \log \left (x^{2} + x \left (-\frac{a}{b}\right )^{\frac{1}{3}} + \left (-\frac{a}{b}\right )^{\frac{2}{3}}\right )}{9 \, a b^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(b*x^3+a)^2,x, algorithm="giac")

[Out]

-1/3*x^2/((b*x^3 + a)*b) - 2/9*(-a/b)^(2/3)*log(abs(x - (-a/b)^(1/3)))/(a*b) - 2/9*sqrt(3)*(-a*b^2)^(2/3)*arct
an(1/3*sqrt(3)*(2*x + (-a/b)^(1/3))/(-a/b)^(1/3))/(a*b^3) + 1/9*(-a*b^2)^(2/3)*log(x^2 + x*(-a/b)^(1/3) + (-a/
b)^(2/3))/(a*b^3)